Dispositivos de almacenamiento y generación de energía eléctrica basados en materiales cerámicos avanzados
PDF

Cómo citar

Pradal Velázquez, E., & Reyes Montero, A. (2023). Dispositivos de almacenamiento y generación de energía eléctrica basados en materiales cerámicos avanzados. Materiales Avanzados, (2), 56–62. Recuperado a partir de https://revista.iim.unam.mx/index.php/materialesa_avanzados/article/view/90

Resumen

-

PDF

Citas

S. Koohi-Fayegh y M. A. Rosen. A review of energy storage types, applications, and recent developments. Journal of Energy Storage, 27 (2020), 101047.

J. B. Goodenough. Energy storage materials: A perspective. Energy Storage Materials, 1 (2015), 158.

Manthiram. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci., 3 (2017), 1063.

S. G. Booth et al. Perspectives for next generation lithium-ion battery cathode materials. APL Mater., 9 (2021), 109201.

B. Zhao et al. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng. R Rep., 98 (2015), 1.

M. M. Thackeray y K. Amine. Li4Ti5O12 spinel anodes. Nat. Energy, 6 (2021), 683.

S. Xia et al. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem, 5 (2019), 753.

K. Chayambuka et al. Sodium-Ion Battery Materials and Electrochemical Properties Reviewed. Adv. Energy Mater., 8 (2018), 1800079.

J. M. Lee et al. Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Lett., 5 (2020), 1939.

T. Oshima, M. Kajita y A. Okuno. Development of Sodium-Sulfur Batteries. Int. J. Appl. Ceram. Technol., 1 (2004), 269.

P. J. Hall y E. J. Bain. Energy-storage technologies and electricity generation. Energy Policy, 36 (2008), 4352.

D. Li et al. Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram., 10 (2021), 675.

K. Zou et al. Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull., 113 (2019), 190.

H. Zhang et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C, 8 (2020), 16648.

F. Narita and M. Fox. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater., 20 (2018), 1700743.

M. Safei, H. A. Sodano, S. R. Anton. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct., 28 (2019), 113001.

N. Sezer y M. Koç. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 80 (2021), 105567.

H. C. Song et al. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning. Adv. Mater., 32 (2020), 2002208.

Y. Zheng et al. Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev., 50 (2021), 9022.

X. L. Shi, J. Zou, Z. G. Chen. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev., 120 (2020), 7399.

K. Koumoto et al. Thermoelectric Ceramics for Energy Harvesting. J. Am. Ceram. Soc., 96 (2013), 1.

W. D. Liu et al. Promising and Eco-Friendly Cu2X-Based Thermoelectric Materials: Progress and Applications. Adv. Mater., 32 (2020), 1905703.

T. A. Adams et al. Energy Conversion with Solid Oxide Fuel Cell Systems: A Review of Concepts and Outlooks for the Short- and Long-Term. Ind. Eng. Chem. Res., 52 (2013), 3089.

J. J. Alvarado Flores et al. Advances in the development of titanates for anodes in SOFC. Int. J. Hydrog., 44 (2019), 12529.

Z. Wan et al. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Convers. Manag., 228 (2021), 113729.

X. Yin et al. The potential environmental risks associated with the development of rare earth element production in Canada. Environ. Rev., 29 (2021), 354.

F. Yang et al. Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A, 6 (2018), 5243.

L. Pardo et al. Ecological, lead-free ferroelectrics. Capítulo en Magnetic, Ferroelectric, and Multiferroic Metal Oxides. Elsevier. (2018).

E. Pradal-Velázquez. Structure-property relations in Sodium-Bismuth Titanate related materials. Tesis de doctorado. The University of Sheffield. (2019).

F. Yang et al. From insulator to oxide-ion conductor by a synergistic effect from defect chemistry and microstructure: acceptor-doped Bi-excess sodium bismuth titanate Na0.5Bi0.51TiO3.015. J. Mater. Chem. A, 8 (2020), 25120.

F. Yang et al. Dramatic impact of the TiO2 polymorph on the electrical properties of ‘stoichiometric’ Na0.5Bi0.5TiO3 ceramics prepared by solid-state reaction. J. Mater. Chem. A, 10 (2022), 891.

M. A. Laguna-Bercero. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources, 203 (2012), 4.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Universidad Nacional Autónoma de México

Descargas

Los datos de descargas todavía no están disponibles.