Resumen
Durante las últimas décadas, el incremento de contaminantes tóxicos en el agua ha representado una grave amenaza para la salud pública y el medio ambiente. El uso de nanoadsorbentes magnéticos para la remediación ambiental ha llamado mucho la atención, debido a sus propiedades magnéticas que facilitan la separación y eliminación del adsorbente en el agua utilizando un campo magnético externo. Por lo tanto, las nanopartículas magnéticas brindan una alternativa simple y de bajo mantenimiento a los adsorbentes tradicionales para el tratamiento de aguas contaminadas. En el presente trabajo se hace una breve revisión de las propiedades de las nanoestructuras magnéticas y se describe su uso en la depuración de aguas contaminadas.
Citas
Cullity, B. D., Graham, C. D. (2010). Introduction to Magnetic Materials (English Edition) (2nd ed.). Wiley IEEE Press. ISBN: 978-0471477419.
Mohn, P. (2005). Magnetism in the Solid State: An Introduction: 134 (1st ed. 2003, Corr. 2nd print 2005). Springer. ISBN: 978-3-540-29384-2.
Luna, C., del Puerto Morales, M., Serna, C. J., Vázquez, M. (2003). Multidomain to single-domain transition for uniform Co80Ni20 nanoparticles. Nanotechnology, 14(2), 268. DOI: 10.1088/0957-4484/14/2/332.
Néel, L. (1949). Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. géophys., 5, 99-136.
Ghernaout, D. (2018). Magnetic field generation in the water treatment perspectives: An overview. Int. J. Advances Appl. Sci., 5(1), 193-203. https://doi.org/10.21833/ijaas.2018.01.025.
Tang, S. C., Lo, I. M. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Research, 47(8), 2613-2632. http://dx.doi.org/10.1016/j.watres.2013.02.039.
Murillo-Ortiz, R., Mirabal-Garcia, M., Cruz-Rivera, J. J., Valdez-Perez, D., Martinez, J. R., Perez-Moreno, F., Lobo-Guerrero, A. (2019). Properties and arsenic removal evaluation of polyvinyl alcohol nanofibers with embedded strontium hexaferrite nanoparticles. Materials Chemistry and Physics, 234, 151-157. https://doi.org/10.1016/j.matchemphys.2019.05.043.
Yeganeh, A., Kadkhodaei, M. (2022). A new combustion method for the synthesis of copper oxide nano sheet and Fe3O4/CuO magnetic nanocomposite and its application in removal of diazinon pesticide. J. & Books: Results in Engineering, 16(100599). https://doi.org/10.1016/j.rineng.2022.100599.
Samrot, A. V., Hawwa, H. A., Selvarani, A. J., Faradjeva, E., P. R., P. P., Kumar, S. S. (2021). Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. J. & Books: Curr-Res. Green Sustainable Chem., 4, 100066. https://doi.org/10.1016/j.crgsc.2021.100066.
Wang, Y., López-Valdivieso, A., Zhang, T., Mwamulima, T., Zhang, X., Song, S. (2017). Preparation of Microscale Zero-Valent Iron-Fly Ash-Bentonite Composite and Evaluation of its Adsorption Performance of crystal Violet and Methylene Blue Dyes. Environ. Sci. Pollut. Res., 24, 20050–20062. DOI:10.1007/s11356-017-9426-2.
Liu, J., Wang, Y., Fang, Y., Mwamulima, T., Song, X. (2018). Removal of crystal violet and methylene blue from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. J. Mol. Liq., 250, 468-476. https://doi.org/10.1016/j.molliq.2017.12.003.
Kousik, P., Japes, B. (2022). Adsorptive removal of methyl blue dye through magnetically retrievable BaFe12O19-activated charcoal-chitosan composite powder: kinetics, isotherms and thermodynamics studies. Int. J. Environ. Anal. Chem. DOI: 10.1080/03067319.2022.2128790.
Rocha, L., Sousa, E., Pereira, D., Gil, M. V., Gonzalo Otero, G., Gallo, H., Otero, M., Valdemar I. Esteves, V. I., Calisto, V. (2021). Sustainable and recoverable waste-based magnetic nanocomposites used for the removal of pharmaceuticals from wastewater. Chem. Eng. J., 426, 129974. https://doi.org/10.1016/j.cej.2021.129974.
Mohammadi, L., Hossein Kamani, H., Asghari, H., Mohammadpour, H., Mohammad, G., Rahdar, A., Kyzas, G. (2022). Removal of Amoxicillin from Aqueous Media by Fenton-like Sonolysis/H2O2 Process Using Zero-Valent Iron Nanoparticles. Molecules, 27(19), 6308. https://doi.org/10.3390/molecules27196308.
Zhao, F., Fang, S., Gao, Y., Bi, J. (2022). Removal of aqueous pharmaceuticals by magnetically functionalized Zr-MOFs: Adsorption Kinetics, Isotherms, and regeneration. J. Colloid Interface Sci., 615, 876-886. https://doi.org/10.1016/j.jcis.2022.02.018.
Kulpa-Koterwa, M., Ryl, J., Górnicka, K., Niedziałkowski, P. (2022). New nanoadsorbent based on magnetic iron oxide containing 1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions Cd2+, Pb2+, Cu2+. J. Mol. Liq., 368(B), 120710. https://doi.org/10.1016/j.molliq.2022.120710.
Rahmani, Z., Ghaemy, M., Olad, A. (2022). Removal of heavy metals from polluted water using magnetic adsorbent based on k-carrageenan and N-doped carbon dots. Hydrometallurgy, 213(105915). https://doi.org/10.1016/j.hydromet.2022.105915.
Abdollahi, A., Salari, D., Zarei, M. (2022). Synthesis and characterization of magnetic Fe3O4@SiO2-MIL-53(Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. J. Environ. Chem. Eng., 10(2), 107144. https://doi.org/10.1016/j.jece.2022.107144.
Morales, C. G., Alarcón, M. T., Astudillo, P. D., Lozano, S. A., Licea, L., Reynoso, L. (2021). Ferrous Magnetic Nanoparticles for Arsenic Removal from Groundwater. Water, 13(18), 2511. https://doi.org/10.3390/w13182511.
Scheverin, V. N., Russo, A. V., Horst, M. F., Jacobo, S., Lassalle, V. L. (2021). Design of magnetic nanotechnological devices for the removal of fluoride from groundwater. Cleaner Eng. Technol., 3, 100097. https://doi.org/10.1016/j.clet.2021.100097.
Khamkure, S., Bustos-Terrones, V., Benitez-Avila, N. J., Cabello-Lugo, M. F., Gamero-Melo, P., Garrido-Hoyos, S. E., Esparza-Schulz, J. M. (2022). Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution. Water Sci. Eng., 15(4), 305-317. https://doi.org/10.1016/j.wse.2022.07.001.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Universidad Nacional Autónoma de México