Abstract
El fenómeno de transición de espín o Spin crossover (SCO) sigue siendo, a varias décadas de su descubrimiento, un fenómeno fascinante. Utilizando el SCO es posible desarrollar: sensores, actuadores, sistemas para el almacenamiento de información, etc. En este trabajo se aborda brevemente la historia del SCO. Además, se explica, de manera didáctica, el fenómeno y las condiciones en que ocurre. También se mencionan los bloques moleculares y ligantes orgánicos más utilizados para desarrollar materiales que exhiban el fenómeno, así como las técnicas analíticas empleadas para estudiar el fenómeno. Por último, se mencionan los nuevos avances en la investigación y el desarrollo de nuevas aplicaciones.
References
N. Amin et al., “Review of Fe-based spin crossover metal complexes in multiscale device architectures,” Inorganica Chim. Acta, p. 121168, 2022.
L. Cambi and L. Szegö, “Über die magnetische Susceptibilität der komplexen Verbindungen,” Berichte der
Dtsch. Chem. Gesellschaft (A B Ser., vol. 64, no. 10, pp. 2591–2598, 1931.
L. Cambi and L. Szegö, “Über die magnetische Susceptibilität der komplexen Verbindungen (II. Mitteil.).,”
Berichte der Dtsch. Chem. Gesellschaft (A B Ser., vol. 66, no. 5, pp. 656–661, 1933.
L. Cambi and L. Malatesta, “Magnetismus und polymorphie innerer komplexsalze: Eisensalze der dithiocarbamidsäuren,”Berichte der Dtsch. Chem. Gesellschaft (A B Ser., vol. 70, no. 10, pp. 2067–2078, 1937.
C. D. Coryell, F. Stitt, and L. Pauling, “The magnetic properties and structure of ferrihemoglobin (methemoglobin) and some of its compounds,” J. Am. Chem. Soc., vol. 59, no. 4, pp. 633–642, 1937.
C. J. Ballhausen, “Introduction to ligand field theory,”McGraw-Hill, 1962.
H. L. Schläfer and G. Gliemann, Einführung in die Ligandenfeldtheorie. Akademische Verlagsgesellschaft, 1967.
Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions II,” J. Phys. Soc. Japan, vol. 9, no. 5, pp.
–779, 1954.
A. Hauser, “Ligand field theoretical considerations,”Spin Crossover Transit. Met. Compd. I, pp. 49–58, 2004.
P. Gütlich, H. A. Goodwin, and Y. Garcia, Spin crossover in transition metal compounds I, vol. 1. Springer Science & Business Media, 2004.
P. Gütlich, A. Hauser, and H. Spiering, “Thermal and Optical Switching of Iron(II) Complexes,” Angew. Chemie Int. Ed. English, vol. 33, no. 20, pp. 2024–2054, 1994, doi: https://doi.org/10.1002/anie.199420241.
A. Bousseksou, G. Molnár, and G. Matouzenko, “Switching of molecular spin states in inorganic complexes by temperature, pressure, magnetic field and light: towards molecular devices,” Eur. J. Inorg. Chem., vol. 2004, no. 22, pp. 4353–4369, 2004.
Y. Garcia and P. Gütlich, “Thermal spin crossover in Mn (II), Mn (III), Cr (II) and Co (III) coordination compounds,”Spin Crossover Transit. Met. Compd. II, pp. 49–62, 2004.
J. S. Griffith and L. E. Orgel, “Ligand-field theory,” Q. Rev. Chem. Soc., vol. 11, no. 4, pp. 381–393, 1957.
R. Bau, P. Gütlich, R. G. Teller, and P. Gütlich, “Spin crossover in iron (II)-complexes,” in Metal Complexes, 1981, pp. 83–195.
Q. Yan, L. Zhou, J.-F. Cheng, Z. Wen, Q. Han, and X.-F. Wang, “High spin-filter efficiency and Seebeck effect
through spin-crossover iron–benzene complex,” J. Chem. Phys., vol. 144, no. 15, p. 154304, 2016.
H. C. Hassan et al., “Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe (ii) spin-crossover (SCO) materials,” RSC Adv., vol. 11, no. 34, pp. 20970–20982, 2021.
K. Rajendiran, S. T. Yoganandham, S. Arumugam, D. Arumugam, and K. Thananjeyan, “An overview of liquid
crystalline mesophase transition and photophysical properties of ‘f block,’‘d block,’ and (SCO) spin-crossover metallomesogens in the optoelectronics,” J. Mol. Liq., vol. 321, p. 114793, 2021.
M. Seredyuk, A. B. Gaspar, V. Ksenofontov, Y. Galyametdinov, J. Kusz, and P. Gütlich, “Does the Solid−Liquid
Crystal Phase Transition Provoke the Spin-State Change in Spin-Crossover Metallomesogens?,” J. Am. Chem. Soc., vol. 130, no. 4, pp. 1431–1439, Jan. 2008, doi: 10.1021/ja077265z.
D. Gao et al., “Pressure Sensor with a Color Change at Room Temperature Based on Spin-Crossover Behavior,”Inorg. Chem., vol. 57, no. 20, pp. 12475–12479, Oct. 2018, doi:10.1021/acs.inorgchem.8b02408.
A. Lapresta-Fernández, S. Titos-Padilla, J. M. Herrera, A. Salinas-Castillo, E. Colacio, and L. F. C. Vallvey, “Photographing the synergy between magnetic and colour properties in spin crossover material [Fe (NH 2 trz) 3](BF4) 2: A temperature sensor perspective,” Chem. Commun., vol. 49, no. 3, pp. 288–290, 2013.
A. Hauser, J. Adler, and P. Gütlich, “Light-induced excited spin state trapping (LIESST) in [Fe (2-mephen) 3] 2+ embedded in polymer matrices,” Chem. Phys. Lett., vol. 152, no. 6, pp. 468–472, 1988.
L. Salmon and L. Catala, “Spin-crossover nanoparticles and nanocomposite materials,” Comptes Rendus Chim., vol. 21, no. 12, pp. 1230–1269, 2018.
W. Wang, B. Ji, C. Zhang, and X. Cao, “New spin crossover polymeric composite and another way to describe the result,” Inorg. Chem. Commun., vol. 67, pp. 55–59, 2016.