Actividad antibacteriana de nanopartículas de quitosano modificado, hidrofobizado con ácido octanoico, cargadas con carvacrol
PDF (Español)

Keywords

Nanopartículas basadas en quitosano
Quitosano
Actividad antibacteriana
Aceites esenciales
Carvacrol

How to Cite

Luna, M., Beltran, O., Encinas Basurto, D. A., Mendez Pfeiffer, P., Ballesteros Monrreal, M. G., Valencia, D., … Juárez-Onofre, J. E. (2024). Actividad antibacteriana de nanopartículas de quitosano modificado, hidrofobizado con ácido octanoico, cargadas con carvacrol. Materiales Avanzados, 2(40), 30–42. https://doi.org/10.22201/iim.rma.2024.40.28

Abstract

El quitosano (Qs) es ampliamente utilizado en el desarrollo de nanosistemas de liberación de componentes bioactivos en áreas de la biomedicina, debido a su biocompatibilidad, biodegradabilidad y baja toxicidad. En el presente trabajo se reporta la obtención de nanopartículas de quitosano modificado con ácido octanoico (QsH) y la encapsulación y transporte de un compuesto bioactivo. Se seleccionó el carvacrol (CAR), compuesto monoterpenoide principal del aceite esencial de orégano y tomillo, debido a sus propiedades antimicrobianas y antioxidantes. La estructura química del Qs se modificó mediante una reacción de amidación, injertando cadenas hidrocarbonadas de 8 carbonos a lo largo del esqueleto químico del Qs (grado de sustitución 15 %), por medio de la unión del ácido carboxílico del ácido octanoico y los grupos amino del Qs. El éxito de la reacción se monitorizó por espectroscopía de infrarrojo (FTIR). Las nanopartículas (NPs) de QsH se obtuvieron por el método de gelificación iónica usando tripolifosfato pentasódico (TPP) como agente reticulante. Para favorecer la encapsulación del CAR en las NPs de QsH, se preparó una emulsión de Tween 80:CAR la cual se utilizó en diferentes proporciones de QsH/CAR (25.0, 50.0 y 75.0 % (p/p)) para la obtención de las NPs de QsH/CAR. Una vez obtenidas las NPs de QsH con y sin CAR se les determinó el tamaño hidrodinámico y el potencial Z. En particular, las NPs de QsH/ CAR preparadas a la proporción del 50 % (p/p) mostraron un tamaño de promedio de 200 nm y un potencial Z de 13.44 mV, las cuales muestran una forma ovoide, según las imágenes de Microscopía de Fuerza Atómica (AFM). Los ensayos de viabilidad bacteriana muestran que tanto E. coli como S. aureus son susceptibles a la actividad de las NPs de QsH/CAR, observándose una drástica disminución de la viabilidad bacteriana, más para la bacteria Gram (+). Estos resultados sugieren que las NPs de QsH/ CAR son biomateriales nanoestructurados novedosos con posibles aplicaciones en el área de la biomedicina.

https://doi.org/10.22201/iim.rma.2024.40.28
PDF (Español)

References

C. Deusenbery, Y. Wang, A. Shukla, Recent Innovations in Bacterial Infection Detection and Treatment, ACS Infectious Diseases. 7 (2021). https://doi.org/10.1021/acsinfecdis.0c00890.

B. Wang, M. Yao, L. Lv, Z. Ling, L. Li, The Human Microbiota in Health and Disease, Engineering. 3, 2017, 71–82. https://doi.org/10.1016/J.ENG.2017.01.008.

OMS, Resistencia a los antimicrobianos, OMS. (2015). http://www.who.int/mediacentre/factsheets/fs194/es/.

WHO | Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, WHO. 2017. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/.

M. Rai, P. Paralikar, P. Jogee, G. Agarkar, A.P. Ingle, M. Derita, S. Zacchino, Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives, International Journal of Pharmaceutics. 519 (2017) 67–78. https://doi.org/10.1016/j.ijpharm.2017.01.013.

A. Wattanasatcha, S. Rengpipat, S. Wanichwecharungruang, Thymol nanospheres as an effective anti-bacterial agent, International Journal of Pharmaceutics. 434 (2012) 360–365. https://doi.org/10.1016/j.ijpharm.2012.06.017.

B.S. Fazly Bazzaz, B. Khameneh, N. Namazi, M. Iranshahi, D. Davoodi, S. Golmohammadzadeh, Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity, Letters in Applied Microbiology. 66 (2018) 506–513. https://doi.org/10.1111/lam.12886.

N. Vahedikia, F. Garavand, B. Tajeddin, I. Cacciotti, S.M. Jafari, T. Omidi, Z. Zahedi, Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes, Colloids and Surfaces B: Biointerfaces. 177 (2019) 25–32. https://doi.org/10.1016/j.colsurfb.2019.01.045.

Blaszyk M, Holley RA. 1998. Interaction of monolaurin, eugenol y sodium citrate on growth of common meat spoilage and pathogenic organisms. International Journal of Food Microbiology. 39:175–183. https://doi.org/10.1016/S0168-1605(97)00134-7.

Helander, I.M., Alakomi, H.L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E.J., Gorris, L.G.M., Wright, A.V., 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agri. Food Chem. 46, 3590–3595. https://doi.org/10.1021/jf980154m.

Ultee A, Bennik MH, Moezelaar R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68:1561–1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002.

Lambert G, Fattal E, Couvreur P. 2001 Nanoparticulate systems for the delivery of antisense oligonucleotides, Adv. Drug Deliv. Rev. 47(1)99-112. https://doi.org/10.1016/S0169-409X(00)00116-2.

Burt SA, Van der Zee R, Koets P, De Graaff AM, Van Knapen F, Gaastra W, Haagsman, H, Veldhuizen JA. 2007. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Applied and Environmental Microbiology. 73(14):4484-4490. https://doi.org/10.1128/AEM.00340-07.

A.R. Bilia, C. Guccione, B. Isacchi, C. Righeschi, F. Firenzuoli, M.C. Bergonzi, Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach, Evidence-Based Complementary and Alternative Medicine. 2014 (2014) 1–14. https://doi.org/10.1155/2014/651593.

Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16, 71, 2018. https://doi.org/10.1186/s12951-018-0392-8.

Shukla S, Mishra A, Arotiba O, Mamba B. Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 2013 46-58.

Pichyangkura R, Chadchawan S. Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196, 2015, 49-65. https://doi.org/10.1016/j.ijbiomac.2013.04.043.

Majeti N.V Ravi Kumar. A review of chitin and chitosan applications, Reactive and Functional Polymers, Volume 46, Issue 1, 2000, 1-27, https://doi.org/10.1016/S1381-5148(00)00038-9.

A. Verlee, S. Mincke, C. V. Stevens, Recent developments in antibacterial and antifungal chitosan and its derivatives, Carbohydrate Polymers. 164, 2017, 268–283. https://doi.org/10.1016/j.carbpol.2017.02.001.

J.P. Quiñones, H. Peniche, C. Peniche, Chitosan Based Self-Assembled Nanoparticles in Drug Delivery, Polymers. 10, 2018, 235. https://doi.org/10.3390/polym10030235.

Helander I, Nurmiaho-Lassila E, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food, 17, 2001, 235-244. https://doi.org/10.1016/S0168-1605(01)00609-2.

Bingren Tian, Shiyao Hua, Jiayue Liu. Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy, Carbohydrate Polymers, Volume 315, 2023, 120972. https://doi.org/10.1016/j.carbpol.2023.120972.

Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Novel hydrophylic chitosan-polyethylene oxide nanoparticles as protein carriers, Journal of Applied Polymer Science. 63, 1997,125-132. https://doi.org/10.1002/(SICI)1097-4628.

S. Farris, L. Mora, G. Capretti, L. Piergiovanni, Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment, Journal of Chemical Education. 89, 2012, 121–124. https://doi.org/10.1021/ed200261w.

P. Calvo, C. Remuñan-López, J.L. Vila-Jato, M.J. Alonso, Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers, Journal of Applied Polymer Science. 63, 1997, 125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.

E. Bobu, R. Nicu, M. Lupei, F.L. Ciolacu, J. Desbrières, Synthesis and characterization of n-alkyl chitosan for papermaking applications, 45, 2011, 619-625. https://hal.science/hal-01585404.

Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science. 55, 2010, 675-709. https://doi.org/10.1016/j.pmatsci.2010.03.001.

I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments. 78, 2007. https://doi.org/10.1063/1.2432410.

Muzarelli RAA, Rochetti R. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr Polym 5, 1985, 461-472.

Miya M, Iwamoto R, Yoshikawa S, Mima S. IR spectroscopic determination of CONH content in highly deacetylated chitosan. Int J Biol Macromol 2, 1980, 323–324. https://doi.org/10.1007/BF02879541.

Pelletier A, Lemire I, Syguch J, Chornet B, Overend RP. Chitin/chitosan transformation by thermo-mechano-chemical treatment including characterization by enzymatic depolymerization. Biotechnol Bioeng 36, 1990, 310-315. https://doi.org/10.1002/bit.260360313.

Heux L, Brugnerotto J, Desbrieres J, Versali MF, Rinaudo M. Solid state NMR for determination of degree of acetylation of chitin and chitosan, Biomacromolecules 1, 2000, 746-751. https://doi.org/10.1021/bm000070y.

E.V.R. Campos, P.L.F. Proença, J.L. Oliveira, A.E.S. Pereira, L.N. de M. Ribeiro, F.O. Fernandes, K.C. Gonçalves, R.A. Polanczyk, T. Pasquoto-Stigliani, R. Lima, C.C. Melville, J.F. della Vechia, D.J. Andrade, L.F. Fraceto, Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control, Scientific Reports, 8, 2018, 1–14. https://doi.org/10.1038/s41598-018-26043-x.

F. Chen, Z. Shi, K.G. Neoh, E.T. Kang, Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles, Biotechnology and Bioengineering. 104 (2009) 30–39. https://doi.org/10.1002/bit.22363.

M. C, V. V, A. V, T. A, C. C, P. D, F. M, S. R, M. I, Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems, Pharmaceutics. 11, 2019. https://doi.org/10.3390/PHARMACEUTICS11030140.

A. Giacometti, O. Cirioni, F. Barchiesi, M.S. del Prete, M. Fortuna, F. Caselli, G. Scalise, In vitro susceptibility tests for cationic peptides: Comparison of broth microdilution methods for bacteria that grow aerobically, Antimicrobial Agents and Chemotherapy. 44 (2000) 1694–1696. https://doi.org/10.1128/AAC.44.6.1694-1696.2000.

R.A. Mauricio-Sánchez, R. Salazar, J.G. Luna-Bárcenas, A. Mendoza-Galván, FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning, Vibrational Spectroscopy. 94 (2018) 1–6. https://doi.org/10.1016/J.VIBSPEC.2017.10.005.

Robles E, Villar E, Alatorre-Meda M, Burboa MG, Valdez MA, Taboada P, Mosquera. 2012. Effects of the Hydrophobization on Chitosan–Insulin Nanoparticles Obtained by an Alkylation Reaction on Chitosan. J. Appl. Polym. Sci. 129, 822–834. https://doi.org/10.1002/app.38870.

Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloid. Surf B Biointerfaces 84, 2011, 163-171. https://doi.org/10.1016/j.colsurfb.2010.12.031.

T.L. Lin, C.C. Shu, Y.M. Chen, J.J. Lu, T.S. Wu, W.F. Lai, C.M. Tzeng, H.C. Lai, C.C. Lu, Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome, Frontiers in Pharmacology. 11, 2020. https://doi.org/10.3389/fphar.2020.00554.

J.G. Swoboda, J. Campbell, T.C. Meredith, S. Walker, Wall teichoic acid function, biosynthesis, and inhibition, ChemBioChem. 11, 2010, 35–45. https://doi.org/10.1002/cbic.200900557.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Universidad Nacional Autónoma de México

Downloads

Download data is not yet available.