Resumen
-
Citas
. Iqbal, S. et al. Biomaterials evolution: from inert to instructive. Biomater. Sci. 11, 6109–6115 (2023).
. Chang Chien, G. C. & Stogicza, A. Regenerative Medicine. in Pain Care Essentials and Innovations 245–253 (Elsevier, 2021). doi:10.1016/B978-0-323-72216-2.00017-X.
. Caddeo, S., Boffito, M. & Sartori, S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front. Bioeng. Biotechnol. 5, (2017).
. Poel, W. E. Preparation of Acellular Homogenates From Muscle Samples. Science (80-. ). 108, 390–391 (1948).
. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).
. Martins, A. R., Matias, G. S. S., Batista, V. F., Miglino, M. A. & Fratini, P. Wistar rat dermis recellularization. Res. Vet. Sci. 131, 222–231 (2020).
. Crusio, W. E., Dong, H. & Radeke, H. H. Decellularization: Methods of Tissue and Whole Organ in Tissue Engineering. Advances in Experimental Medicine and Biology (2021).
. Ott, H. & Taylor, D. Descelularización y recelularización de órganos y tejidos. 1–21 (2008).
. Guyette, J. P. et al. Perfusion decellularization of whole organs. Nat. Protoc. 9, 1451–1468 (2014).
. Duisit, J., Maistriaux, L., Bertheuil, N. & Lellouch, A. G. Engineering Vascularized Composite Tissues by Perfusion Decellularization/Recellularization: Review. Curr. Transplant. Reports 8, 44–56 (2021).
. Heath, D. E. A Review of Decellularized Extracellular Matrix Biomaterials for Regenerative Engineering Applications. Regen. Eng. Transl. Med. 5, 155–166 (2019).
. Morrissey, J., Mesquita, F. C. P., Hochman-Mendez, C. & Taylor, D. A. Whole Heart Engineering: Advances and Challenges. Cells Tissues Organs 1–11 (2021) doi:10.1159/000511382.
. Hussein, K., Korossis, S. & Iop, L. Editorial: Tissue and organ decellularization strategies in regenerative medicine; recent advances, current translational challenges, and future directions. Front. Bioeng. Biotechnol. 11, 1–4 (2023).
. Kemp, P. History of regenerative medicine: looking backwards to move forwards. Regen. Med. 1, 653–669 (2006).
. Wang, B. et al. Functional acellular matrix for tissue repair. Mater. Today Bio 18, (2023).
. Gilpin, A. & Yang, Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res. Int. (2017) doi:10.1155/2017/9831534.
. Orlando, G. et al. Regenerative medicine and organ transplantation: Past, present, and future. Transplantation 91, 1310–1317 (2011).
. Sengupta, D., Waldman, S. D. & Li, S. From in vitro to in situ tissue engineering. Ann. Biomed. Eng. 42, 1537–1545 (2014).
. Barthes, J. et al. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances. Biomed Res. Int. 2014, (2014).
. Badylak, S. F., Taylor, D. & Uygun, K. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2011).
. Wan, M. et al. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact. Mater. 6, 4255–4285 (2021).
. Vo, T.-S. & Kim, S.-K. Potential Anti-HIV Agents from Marine Resources: An Overview. Mar. Drugs 8, 2871–2892 (2010).
. Wang, Y. et al. Marine biomaterials in biomedical nano/micro-systems. J. Nanobiotechnology 21, 408 (2023).
. Balagangadharan, K., Rao, H., Shadamarshan, P., Balaji, H. & Selvamurugan, N. Composites Containing Marine Biomaterials for Bone Tissue Repair. in 357–382 (2019). doi:10.1007/978-981-13-8855-2_16.
. Meyhami, T., Hassanajili, S., Tanideh, N. & Taheri, E. Three dimensional scaffolds of hybrid PLA/PCL/HA/silica nanocomposites for bone tissue engineering. Polym. Bull. 81, 6025–6053 (2024).
. Reddy, P. N., Kolla, H. B., Berde, C. V., Kota, R. K. & Veera Bramhachari, P. Biomedical Applications of Marine Biopolymers in Tissue Engineering and Regenerative Medicine. in Marine Bioactive Molecules for Biomedical and Pharmacotherapeutic Applications 39–59 (Springer Nature Singapore, 2023). doi:10.1007/978-981-99-6770-4_3.
. Renita, A. A. et al. Energy recovery and clean water remediation using antibiofouling polysaccharide coated PAN hollow fiber membrane obtained via green route synthesis. Energy 294, 130635 (2024).
. Prokopiuk, V. et al. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem. Biophys. (2024) doi:10.1007/s12013-024-01225-9.
. Walma, D. A. C. & Yamada, K. M. The extracellular matrix in development. Development 147, (2020).
. Kyle, S., Jessop, Z. M., Al-Sabah, A. & Whitaker, I. S. ‘Printability’’ of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art’. Adv. Healthc. Mater. 6, (2017).
. Naghieh, S., Sarker, M., Sharma, N. K., Barhoumi, Z. & Chen, X. Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Appl. Sci. 10, 292 (2019).
. Corker, A., Ng, H. C.-H., Poole, R. J. & García-Tuñón, E. 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials. Soft Matter 15, 1444–1456 (2019).
. Electrospun Nanofibers. (Springer International Publishing, 2022). doi:10.1007/978-3-030-99958-2.
. Wang, X., Ding, B., Sun, G., Wang, M. & Yu, J. Electrospinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog. Mater. Sci. 58, 1173–1243 (2013).
. Blachowicz, T. & Ehrmann, A. Production and Application of Biodegradable Nanofibers Using Electrospinning Techniques. in 1–24 (2021). doi:10.1007/978-3-030-79979-3_1.
. Ashok, N., Sowmya, S. & Jayakumar, R. Fabrication of Multiscale Polymeric Fibres for Biomedical Applications. in 23–36 (2022). doi:10.1007/12_2022_137.
. McKean, R. J. & Heister, E. Mimetix® electrospun scaffold. in Technology Platforms for 3D Cell Culture 284–302 (Wiley, 2017). doi:10.1002/9781118851647.ch12.
. Vasconcelos, F., Reis, R. L., Martins, A. & Neves, N. M. Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both. in Electrospun Nanofibers 251–295 (Springer International Publishing, 2022). doi:10.1007/978-3-030-99958-2_10.
. Ramírez-Marín, Y. et al. Perfusion Decellularization of Extrahepatic Bile Duct Allows Tissue-Engineered Scaffold Generation by Preserving Matrix Architecture and Cytocompatibility. Materials (Basel). 14, 3099 (2021).
. Giraldo-Gomez, D. M. et al. Trypsin as enhancement in cyclical tracheal decellularization: Morphological and biophysical characterization. Mater. Sci. Eng. C 59, 930–937 (2016).
. Shoulders, M. D. & Raines, R. T. Collagen Structure and Stability. Annu. Rev. Biochem. 78, 929–958 (2009).
. Mwiiri, F. K. & Daniels, R. Electrospun nanofibers for biomedical applications. in Delivery of Drugs 53–74 (Elsevier, 2020). doi:10.1016/B978-0-12-817776-1.00003-1.
. Jun, I., Han, H.-S., Edwards, J. & Jeon, H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int. J. Mol. Sci. 19, 745 (2018).

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Universidad Nacional Autónoma de México