Resumen
Una de las emergencias ambientales más graves a las que nos enfrentamos actualmente es la contaminación del agua. La descarga de estos contaminantes en el medio ambiente afecta la salud humana y los ecosistemas acuáticos. La implementación de los Procesos de Oxidación Avanzada (POA) para el tratamiento de aguas muestran ser realmente beneficiosos, ya que estos ayudan a tratar contaminantes altamente tóxicos, logrando su degradación. El uso de catalizadores como el hierro en los Procesos de Oxidación Parcial (POA) puede ser muy beneficioso; no solo son estables, sino que también pueden regenerarse, lo que reduce la necesidad de reemplazarlos constantemente y disminuye los costos operativos. Además, incorporar energía solar en el proceso mejora la eficiencia energética y hace que el sistema sea más sostenible, al aprovechar una fuente de energía renovable para promover reacciones químicas.
Citas
Tariq M., Muhammad M., Khan J., Raziq A., Kashif Uddin M., Niaz A., Ahmed Sameh S., Rahim A. Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst, Journal of Molecular Liquids, 2020 (312), 113399.
Comisión Nacional de Derechos Humanos/Universidad Nacional Autónoma de México (CNDH/UNAM). Estudio sobre la protección de ríos, lagos y acuíferos desde la perspectiva de los derechos humanos https://www.cndh.org.mx/sites/default/files/doc/Informes/Especiales/ESTUDIO_RIOS_LAGOS_ACUIFEROS.pdf, 2018.
Ahmed, I.A.; H. Ragab, A.; Habila, M.A.; Alomar, T.S.; Aljuhani, E.H. Equilibrium and Kinetic Study of Anionic and Cationic Pollutants Remediation by Limestone–Chitosan–Alginate Nanocomposite from Aqueous Solution. Molecules, 2021 (26), 2586.
De Moraes N., Santana R., Gomes R., Santos-Júnior S., De Lucena, A., Zaidan L.E., Napoleão D. Performance verification of different advanced oxidation processes in the degradation of the dye acid violet 17: reaction kinetics, toxicity, and degradation prediction by artificial neural networks. Chemical Papers. 2020 (75), 539–552.
Morais V.S., Barrada R.V., Moura M.N., Almeida J.R., Moreira T.F.M., Gonçalves G.R., Ferreira S.A.D., Lelis M.F.F., Freitas M.B.J.G. Synthesis of manganese ferrite from spent Zn–MnO2 batteries and its application as a catalyst in heterogeneous photo-Fenton processes, Journal of Environmental Chemical Engineering, 2020 (8), 3, 103716.
Pourehie O., Saien J. Homogeneous solar Fenton and alternative processes in a pilot-scale rotatable reactor for the treatment of petroleum refinery wastewater. Process Safety and Environmental Protection, 2020 (135), 236–243.
Bousalah D., Zazoua H., Boudjemaa A., Benmounah A. and Bachari K. Degradation of Indigotine food dye by Fenton and photo-Fenton processes, International Journal of Environmental Analytical Chemistry, 2020, 4609–4622.
Silva, L., Moreira, F., Souza, A., Souza S., Boaventura, R., Vilar, V. Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry. J. Cleaner Produc., 2018 (198), 430–442.
Chen X-L., Li F., Chen HY., Wang HJ., Li GG. Fe2O3/TiO2 functionalized biochar as a heterogeneous catalyst for dyes degradation in water under Fenton processes. Journal of Environmental Chemical Engineering, 2020 (8), 103905.
Cui M., Li Y., Sun Y., Wang H., Li M., Li L. and Xu W. Study on Adsorption Performance of MgO/Calcium Alginate Composite for Congo Red in Wastewater. Journal of Polymers and the Environment, 2021 (29), 3977–3987.
Selvaraj V., Swarna Karthika T., Mansiya C., Alagar M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, (2021). 1224, 129195.
Ganiyu S.O., de Araújo Costa E., Martínez-Huitle C., dos Santos E.V. Electro-Fenton catalyzed by Fe-rich lateritic soil for the treatment of food colorant Bordeaux Red (E123): Catalyst characterization, optimization of operating conditions and mechanism of oxidation, Separation and Purification Technology, 2020 (242), 116776.
João J.J., Silva C.S., Vieira J.L., Silveira M.F. Treatment of swine wastewater using the Fenton process with ultrasound and recycled iron. Rev. Ambient. Água. 2020 (3), 15.
Gou Y., Chen P., Yang L., Li S., Peng L., Song S., Xu Y. Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review. Chemosphere, 2021 (270), 129481.
Maroudas A., Pandis P.K., Chatzopoulou A., Davellas L.R., Sourkouni G., Argirusis C. Decoloración sinérgica de colorantes azoicos mediante ultrasonidos, fotocatálisis y reacción foto-Fenton. Ultrason Sonochem. 2021 (71), 105367.
Lamkhanter H., Frindy S., Park Y., Sillanpӓӓ M., Mountacer H. Photocatalytic degradation of fungicide difenoconazole via photo-Fenton process using α-Fe2O3. Materials Chemistry and Physics, 2021 (267), 124713.
Foteinis S., Monteagudo J.M., Durán A., Chatzisymeon E. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale, Science of The Total Environment, 2018 (612), 605–612.
Sujay-Shekar G.C., Alkanad K., Hezam A., Alsalme A., Al-Zaqri N., Lokanath N.K. Enhanced photo-Fenton activity over a sunlight-driven ignition synthesized α-Fe2O3-Fe3O4/CeO2 heterojunction catalyst enriched with oxygen vacancies, Journal of Molecular Liquids, 2021 (335), 116186.
Villegas-Guzman P., Giannakis S., Rtimi S., Grandjean D., Bensimon M., de Alencastro L.F., Torres-Palma R. A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids, 2017 (219), 538–549.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Universidad Nacional Autónoma de México