Suspensiones concentradas de partículas sólidas no coloidales: respuesta reológica y su modelado computacional
PDF

Palabras clave

Reología
Fluido no-Newtoniano
Suspensiones concentradas no coloidales
Engrosamiento al corte discontinuo
Flujo bandeado

Cómo citar

Rosales-Romero, A., Vázquez-Quesada, A., Ellero, M., & López-Aguilar, J. E. (2024). Suspensiones concentradas de partículas sólidas no coloidales: respuesta reológica y su modelado computacional. Materiales Avanzados, (5), 143–154. https://doi.org/10.22201/iim.rma.2024.41.108

Resumen

En esta revisión se describe y se muestra la compleja reología que exhiben las suspensiones concentradas de partículas sólidas no coloidales. Su presencia en la industria y en la vida cotidiana hace que sea relevante describir y explicar el origen de su comportamiento reológico. Para conocer qué son, cómo se comportan, cómo se diferencian de los fluidos Newtonianos y qué estrategias se usan para reproducir su flujo, esta revisión se divide de la siguiente manera: en la sección I se describe la composición y los tipos de suspensiones en función de la fracción de sólidos; en la sección II se describe la reología, que se encarga de caracterizar y describir las propiedades materiales de los fluidos, en este caso, las suspensiones concentradas; en la sección III se exhibe el comportamiento de las suspensiones concentradas, como son: el adelgazamiento al corte, el engrosamiento al corte continuo y discontinuo, y el flujo bandeado en la dirección de la vorticidad; en la sección IV se describen cómo se modelan y cuáles son los mecanismos propuestos que buscan reproducir la reología de las suspensiones concentradas, y en la sección V se muestra el trabajo por hacer en otros tipos de suspensiones.

https://doi.org/10.22201/iim.rma.2024.41.108
PDF

Citas

A. Fall, A. Lemaitre, G. Ovarlez, Discontinuous shear thickening in cornstarch suspensions, EPJ Web of Conferences 140 (2017) 09001–4.

E. Guazzelli, O. Pouliquen, Rheology of dense granular suspensions, J. Fluid Mech. 852 (2018) 10.1017.

P. Bourrianne, V. Niggel, G. Polly, T. Divoux, G. McKinley, Unifying disparate experimental views on shear-thickening suspensions, Soft Condens. Matter (2020).

J. Stickel, R. Powell, Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech. 37 (2005) 129–149.

J. Lewis, Direct-write assembly of ceramics from colloidal inks, Curr. Opin. Solid State Mater. Sci. 6 (2002) 245–250.

N. Wagner, J. Brady, Shear thickening in colloidal dispersions, Phys. Today 62 (2009) 27–32.

X. Zhang, W. Li, X. Gong, The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper, Smart Mater. Struct. 17 (2008) 035027.

E. Brown, N. Forman, C. Orellana, H. Zhang, B. Maynor, D. Betts, J. DeSimone, H. Jaeger, Generality of shear thickening in dense suspensions, Nature Mater 9 (2010) 220–224.

R. Seto, G. Giusteri, Normal stress differences in dense suspensions, J. Fluid Mech. 857 (2018) 200–215.

B. Saint-Michel, T. Gibaud, S. Manneville, Uncovering instabilities in the spatiotemporal dynamics of a shear-thickening cornstarch suspension, Phys. Rev. X 8 (2018) 031006.

M. Hermes, B. Guy, W. Poon, G. Poy, M. Cates, M. Wyart, Unsteady flow and particle migration in dense, non-Brownian suspensions, J. Rheol. 60 (2016) 905.

F. Morrison, Understanding rheology, Oxford University Press, 2001.

R. Bird, R. Armstrong, O. Hassager, Dynamics of polymeric liquids, Vol. 1, John Wiley & Sons, 1987.

H. Barnes, J. Hutton, K. Walters, An introduction to rheology, Elsevier, 1989.

M. Denn, J. Morris, Rheology of non-Brownian suspensions, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 203–228.

D. Verrelli, A.R. Kilcullen, Normal Stress differences and yield stresses in attractive particle networks, Adv. Condens. Matter Phys., 2016 (2016), 1716598.

A. Einstein, Eine neue bestimmung der moleküldimensionen, Ann. Phys. 324 (1906) 289–306.

G. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech. 41 (1970) 545–570.

B. Guy, M. Hermes, W. Poon, Towards a unified description of the rheology of hard-particle suspensions, Phys. Rev. Lett. 115 (2015) 088304.

M. Smith, R. Besseling, M. Cates, Dilatancy in the flow and fracture of stretched colloidal suspensions, Nat. Commun. 1 (2010) 114.

I. Zarraga, D. Hill, D. Leighton Jr., The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, J. Rheol. 44 (2000) 185–220.

C. Ness, R. Seto, R. Mari, The physics of dense suspensions, Annu. Rev. Condens. Matter Phys. 13 (2022) 97–117.

E. Brown, H. Jaeger, Shear thickening in concentrated suspensions: phenomenology, mechanisms, and relations to jamming, Rep. Prog. Phys. 77 (2014) 046602.

R. Mari, R. Seto, J. Morris, M. Denn, Discontinuous shear thickening in Brownian suspensions by dynamic simulation, Proc. Natl. Acad. Sci. 112 (2015) 15326–15330.

M. Maxey, Simulation methods for particulate flows and concentrated suspensions, Annu. Rev. Fluid Mech. 49 (2017) 171–193.

A. Rosales-Romero, A. Vázquez-Quesada, S. Prasanna-Kumar, J. López-Aguilar, M. Ellero, Effects of confinement-induced non-Newtonian lubrication forces on the rheology of a dense suspension, J. Non-Newtonian Fluid Mech. 329 (2024) 105248.

E. Andrade, J. Fox, The mechanism of dilatancy, Proc. Phys. Soc. B 62 (1949) 483.

R. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability, Trans. Soc. Rheol. 16 (1972) 155.

A. Metzner, M. Whitlock, Flow behavior of concentrated (dilatant) suspensions, T. Soc. Rheol. 2 (1958) 239–254.

J. Brady, G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, J. Fluid Mech. 155 (1985) 105–129.

R. Seto, R. Mari, J. Morris, M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions, Phys. Rev. Lett. 111 (2013) 218301.

R. Mari, R. Seto, J. Morris, M. Denn, Shear thickening frictionless and frictional rheologies in non-Brownian suspensions, J. Rheol. 58 (6) (2014) 1693–1724.

C. Clavaud, A. Bérut, B. Metzger, Y. Forterre, Revealing the frictional transition in shear-thickening suspensions, Proc. Natl. Acad. Sci. USA 114 (20) (2017) 5147–5152.

A. Colin, A. Le, A. Izzet, G. Ovarlez, Solvents govern rheology and jamming of polymeric bead suspensions, J. Colloid Interface Sci. 629 (2023) 438–450.

M. Wyart, M. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions, Phys. Rev. Lett. 112 (2014) 098302.

B. Guy, J. Richards, D. Hodgson, E. Blanco, W. Poon, Constraint-based approach to granular dispersion rheology, Phys. Rev. Lett. 121 (2018) 128001.

N. Lin, C. Ness, M. Cates, J. Sun, I. Cohen, Tunable shear thickening in suspensions, Proc. Natl. Acad. Sci. 113 (2016) 10774–10778.

J. Morris, Lubricated-to-frictional shear thickening scenario in dense suspensions, Phys. Rev. Fluids 3 (2018) 110508.

R. More, A. Ardekani, Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions, Phys. Rev. E 103 (2021) 062610.

J. Ruiz-Lopez, S. Prasannda Kumar, A. Vazquez-Quesada, J. de Vicente, E. Marco, Tribological variable-friction coefficient models for the simulations of dense suspensions of rough poly-disperse particles, J. Rheol. 67 (2023) 541–558.

H. Barnes, Shear thickening (“dilatancy”) in suspensions of non-aggregating solid particles dispersed in Newtonian liquids, J. Rheol. 33 (1989) 329–366.

J. Brady, G. Bossis, Stokesian dynamics, Annu. Rev. Fluid Mech. 20 (1988) 111–157.

J. Klein, E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 269 (1995) 816–819.

G. Luengo, J. Israelachvili, S. Granick, Generalized effects in confined fluids: new friction map for boundary lubrication, Wear 200 (1996) 328–335.

G. Luengo, F. Schmitt, R. Hill, J. Israelachvili, Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties, Macromolecules 30 (1997) 2482–2494.

A. Vázquez-Quesada, M. Ellero, Analytical solution for the lubrication force between two spheres in a bi-viscous fluid, Phys. Fluids 28 (2016) 073101.

E. Bertevas, X. Fan, R. Tanner, Simulation of the rheological properties of suspensions of oblate spheroidal particles in a Newtonian fluid, Rheol. Acta 49 (2009) 53–73.

A. Kumar, M. Graham, Margination, and segregation in confined flows of blood and other multicomponent suspensions, Soft Matter 8 (2012) 10536.

S. Pednekar, J. Chun, J. Morris, Bidisperse and polydisperse suspension rheology at large solid fraction, J. Rheol. 62 (2018) 513–526.

R. Scirocco, J. Vermant, J. Mewis, Shear thickening in filled Boger fluids, J. Rheol. 16 (2020) 9519.

S. Dai, R. Tanner, Rheology of non-colloidal suspensions with viscoelastic matrices, Soft Matter 16 (2020) 9519.

G. D’Avino, F. Greco, P. Maffettone, Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices, Annu. Rev. Fluid Mech. 49 (2017) 341–360.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2024 Universidad Nacional Autónoma de México

Descargas

Los datos de descargas todavía no están disponibles.